Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Journal of Agricultural Science, 4(154), p. 612-631, 2015

DOI: 10.1017/s0021859615000507

Links

Tools

Export citation

Search in Google Scholar

Effect of Ppd-1 genes on durum wheat flowering time and grain filling duration in a wide range of latitudes

Journal article published in 2015 by C. Royo ORCID, S. Dreisigacker, C. Alfaro, K. Ammar, D. Villegas ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

SUMMARYUnderstanding the effect of genetic factors controlling flowering time is essential to fine-tune crop development to each target environment and to maximize yield. A set of 35 durum wheat genotypes of spring growth-habit involving different allelic combinations at Ppd-A1 and Ppd-B1 genes was grown for 2 years at four sites at latitudes ranging from 19°N to 41°N. The emergence-flowering period was reduced from north to south. The frequency in the collection of the insensitive allele GS-105 at Ppd-A1 was greater (34%) than that of allele GS-100 (20%). Genotypes that flowered earlier due to the presence of alleles causing photoperiod insensitivity extended their grain-filling period, but less than the shortening in flowering time. The effect of the allele conferring photoperiod sensitivity at Ppd-A1 was stronger than that at Ppd-B1 (Ppd-A1b > Ppd-B1b). The effect of photoperiod insensitivity alleles was classified as GS-100 > GS-105 > Ppd-B1a. The phenotypic expression of alleles conferring photoperiod insensitivity at Ppd-A1 increased at sites with average day length from emergence to flowering lower than 12 h. An interaction effect was found between Ppd-A1 and Ppd-B1. Differences between allelic combinations in flowering time accounted for c. 66% of the variability induced by the genotype effect, with the remaining 34% being explained by genes controlling earliness per se. The shortest flowering time across sites corresponded to the allelic combination GS-100/Ppd-B1a, which reduced flowering time by 11 days irrespective of the Ppd-A1b/Ppd-B1b combination. The current study marks a further step towards elucidation of the phenotypic expression of genes regulating photoperiod sensitivity and their interaction with the environment.