Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Molecular Microbiology, 1(30), p. 47-56, 1998

DOI: 10.1046/j.1365-2958.1998.01036.x

Links

Tools

Export citation

Search in Google Scholar

Salmonella InvG forms a ring-like multimer that requires the InvH lipoprotein for outer membrane localization

Journal article published in 1998 by Aimee M. Crago, Vassilis Koronakis ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Salmonella species translocate virulence effector proteins from the bacterial cytoplasm into mammalian host cells by means of a type III secretion apparatus, encoded by the pathogenicity island-1 (SPI-1). Little is known about the assembly and structure of this secretion apparatus, but the InvG protein is essential and could be an outer membrane secretion channel for the effector proteins. We observed that in recombinant Escherichia coli, the yield of InvG was enhanced by co-expression of InvH, and showed that mutation of invH decreased the level of InvG in wild-type Salmonella typhimurium. In E. coli, InvG alone was able to form an SDS-resistant multimer, but InvG localization to the outer membrane was dependent upon InvH, a lipoprotein itself located in the outer membrane, and no other SPI-1 specific protein. InvG targeted to the outer membrane by InvH became accessible to extracellular protease. InvG and InvH did not, however, appear to form a stable complex. Electron microscopy of InvG membrane protein purified from E. coli revealed that it forms an oligomeric ring-like structure with inner and outer diameters, 7 nm and 15 nm respectively.