Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 40(114), p. 13005-13010, 2010

DOI: 10.1021/jp106276z

Links

Tools

Export citation

Search in Google Scholar

Amino Acids at Water-Vapor Interfaces: Surface Activity and Orientational Ordering

Journal article published in 2010 by Esteban Vöhringer-Martinez, Alejandro Toro-Labbé ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The surface activity and orientational ordering of amino acids at water-vapor interfaces were studied with molecular dynamics simulations in combination with thermodynamic integration and umbrella sampling. Asparagine, representing amino acids with polar side chains, displays no surface activity. Tryptophan, in contrast, with its hydrophobic indole ring as side chain unveils a free energy minimum at the water-vapor interface, which lies 6 kJ/mol under the hydration free energy. To study the orientational ordering of tryptophan along the interface, the order parameter was calculated. At the free energy minimum and at the Gibbs dividing surface, the order parameter reveals a parallel alignment of the indole ring with the water surface exposing the π-system to electrophiles in the hydrophobic phase and indicating polarization dependent spectroscopy. In the vicinity of this position a perpendicular orientation is obtained. The surface excess, calculated from the potential of mean force along the interface, is in excellent agreement with experimental measurements.