Published in

Elsevier, Chemical Engineering Journal, (240), p. 344-351, 2014

DOI: 10.1016/j.cej.2013.11.067

Links

Tools

Export citation

Search in Google Scholar

Carbon-based materials prepared from pine gasification residues for acetaminophen adsorption

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fly ash, a residue produced from pine gasification, was used as precursor of carbon-based materials assayed in acetaminophen adsorption. Materials prepared by activation with K2CO3, presented high porosity development (ABET ≈ 1200 m2 g−1) and samples calcined at 900 °C presented high volumes of large micropores and mesopores. Kinetic and equilibrium acetaminophen adsorption data showed that the process obeys to the pseudo-second order kinetic equation and Langmuir model, respectively. The rate of acetaminophen adsorption depends of the presence of larger micropores. For the lab-made samples monolayer adsorption capacities attained values similar to those of commercial carbons. The influence of the micropore size distribution of the carbons in the acetaminophen adsorption process justified the lower adsorption affinities of the lab-made carbons. The importance of pores of a specific dimension (0.7 nm) to enhance the affinity of the molecule towards the carbon surface was demonstrated. The increase of temperature lead to higher monolayer adsorption capacities, most likely due to the easier accessibility of the acetaminophen species to the narrowest micropores.