Published in

Cell Press, Molecular Therapy, 6(10), p. 1096-1108, 2004

DOI: 10.1016/j.ymthe.2004.08.014

Links

Tools

Export citation

Search in Google Scholar

IL-3 or IL-7 increases ex vivo gene transfer efficiency in ADA-SCID BM CD34+ cells while maintaining in vivo lymphoid potential

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To improve maintenance and gene transfer of human lymphoid progenitors for clinical use in gene therapy of adenosine deaminase (ADA)-deficient SCID we investigated several gene transfer protocols using various stem cell-enriched sources. The lymphoid differentiation potential was measured by an in vitro clonal assay for B/NK cells and in the in vivo SCID-hu mouse model. Ex vivo culture with the cytokines TPO, FLT3-ligand, and SCF (T/F/S) plus IL-3 or IL-7 substantially increased the yield of transduced bone marrow (BM) CD34(+) cells purified from ADA-SCID patients or healthy donors, compared to T/F/S alone. Moreover, the use of IL-3 or IL-7 significantly improved the maintenance of in vitro B cell progenitors from ADA-SCID BM cells and allowed the efficient transduction of B and NK cell progenitors. Under these optimized conditions transduced CD34(+) cells were efficiently engrafted into SCID-hu mice and gave rise to B and T cell progeny, demonstrating the maintenance of in vivo lymphoid reconstitution capacity. The protocol based on the T/F/S + IL-3 combination was included in a gene therapy clinical trial for ADA-SCID, resulting in long-term engraftment of stem/progenitor cells. Remarkably, gene-corrected BM CD34(+) cells obtained from one patient 4 and 11 months after gene therapy were capable of repopulating the lymphoid compartment of SCID-hu hosts.