Published in

Springer (part of Springer Nature), Environmental Monitoring and Assessment, 12(185), p. 10027-10038

DOI: 10.1007/s10661-013-3310-4

Links

Tools

Export citation

Search in Google Scholar

Assessment of hydraulic redistribution on desert riparian forests in an extremely arid area

Journal article published in 2013 by Xing-Ming Hao, Yang Li, Hai-Jun Deng ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The roots of Populus euphratica, a plant that grows in the lower reaches of the Tarim River, Northwest China, exhibit a significant level of hydraulic redistribution; however, quantitative assessments of the water-sharing process and its ecological effects are limited. This study was designed to obtain such data using an assessment model based on field observation parameters, including soil water content (soil water potential), root distribution, and stable isotope δ(18)O values of soil and plant samples during the entire growing season. The results showed that hydraulic redistribution in P. euphratica can be detected in 0-120 cm soil layers, with the amount of hydraulically redistributed water (HRW) in the soil found at different depths as follows: 60-80 > 40-60 > 20-40 > 0-20 > 80-100 > 100-120 cm. The variations in HRW in soil layers can be partly attributed to the vertical distribution of roots. The denser roots found at greater depths positively influenced the amount of redistributed water in lower soil layers. During the growing season, the amount of HRW reached a daily average of 0.27 mm, which allowed increased transpiration and provided an adequate water supply to herbs. Based on the stable isotope (δ(18)O) data, the amount of HRW provided by the roots of P. euphratica could meet 22-41 % of its water demand.