Published in

American Chemical Society, Environmental Science and Technology, 22(45), p. 9574-9581, 2011

DOI: 10.1021/es201323a

Links

Tools

Export citation

Search in Google Scholar

Heavy Metal Sorption at the Muscovite (001)-Fulvic Acid Interface

Journal article published in 2011 by Sang Soo Lee, Kathryn L. Nagy, Changyong Park ORCID, Paul Fenter
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The role of fulvic acid (FA) in modifying the adsorption mode and sorption capacity of divalent metal cations on the muscovite (001) surface was evaluated by measuring the uptake of Cu(2+), Zn(2+), and Pb(2+) from 0.01 m solutions at pH 3.7 with FA using in situ resonant anomalous X-ray reflectivity. The molecular-scale distributions of these cations combined with those previously observed for Hg(2+), Sr(2+), and Ba(2+) indicate metal uptake patterns controlled by cation-FA binding strength and cation hydration enthalpy. For weakly hydrated cations the presence of FA increased metal uptake by approximately 60-140%. Greater uptake corresponded with increasing cation-FA affinity (Ba(2+) ≈ Sr(2+) < Pb(2+) < Hg(2+)). This trend is associated with differences in the sorption mechanism: Ba(2+) and Sr(2+) sorbed in the outer portion of the FA film whereas Pb(2+) and Hg(2+) complexed with FA effectively throughout the film. The more strongly hydrated Cu(2+) and Zn(2+) adsorbed as two distinct outer-sphere complexes on the muscovite surface, with minimal change from their distribution without FA, indicating that their strong hydration impedes additional binding to the FA film despite their relatively strong affinity for FA.