Published in

Royal Society of Chemistry, RSC Advances, 24(5), p. 18538-18545

DOI: 10.1039/c4ra15035j

Links

Tools

Export citation

Search in Google Scholar

Effect of iron acetylacetonate on the crosslink structure, thermal and flammability properties of novel aromatic diamine-based benzoxazines containing cyano group

Journal article published in 2015 by Hongqiang Yan, Huaqing Wang ORCID, Jie Cheng, Zhengping Fang, Hao Wang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Iron acetylacetonate (Fe(AcAc)3) was chosen as the catalyst for a novel aromatic diamine-based benzoxazine, containing cyano group (BAPBACP). Its effect on the curing process, thermal and flammability properties of BAPBACP were investigated. The results indicated that without Fe(AcAc)3, the ring-opening polymerization of the BAPBACP monomer occurred and an arylamine Mannich bridge structure was formed at the low curing temperature stage; and then the cyclotrimerization of the cyano group followed at the high curing temperature stage, but the cyano group was not fully cyclotrimerized even after curing at 350 °C for 0.5 h. The addition of 3.5% Fe(AcAc)3 speeded up the curing reaction and the cyano group was fully cyclotrimerized at 350 °C. Thermogravimetric analysis and microscale combustion calorimetry results showed that the poly(BAPBACP) resins possess excellent thermal and flammability properties due to the existence of the arylamine Mannich bridge structure and triazine ring in their crosslinked structure.