Published in

Elsevier, Materials Science and Engineering: A, (563), p. 101-105

DOI: 10.1016/j.msea.2012.11.060

Links

Tools

Export citation

Search in Google Scholar

Characteristic of improved fatigue performance for Zr-based bulk metallic glass matrix composites

Journal article published in 2013 by J. W. Qiao, E. W. Huang ORCID, G. Y. Wang, H. J. Yang, W. Liang, Y. Zhang ORCID, P. K. Liaw
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Zr58.5Ti14.3Nb5.2Cu6.1Ni4.9Be11.0 bulk metallic glass matrix composites exhibit improved four-point-bending fatigue endurance with a fatigue limit of 567 MPa, compared to that under the tension–tension fatigue, due to the high-volume-fractioned dendrites, which can effectively blunt the fatigue-induced cracks. Illuminated by high-energy synchrotron X-ray at 200 and 100 K, the corresponding diffraction peaks, such as (110), (200), and (211) shift rightward to small lattice spacings, compared to those at 298 K. However, the peak widths at 100 K and 200 K are almost identical to that of room temperature. Since an identical fatigue specimen was measured under room temperature, 200 K, and 100 K, the invariant of the peak widths reveal the fact of the irreversible microstructure developments induced by fatigue. Even if the fatigue fracture stress is distinguishingly lower than the yielding strength, the deformation of dendrites locally prevails, evidenced by the occurrence of dislocations.