Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Molecular and Biochemical Parasitology, 1(191), p. 44-52

DOI: 10.1016/j.molbiopara.2013.09.003

Links

Tools

Export citation

Search in Google Scholar

Two putative protein export regulators promote Plasmodium blood stage development in vivo

Journal article published in 2013 by Joachim M. Matz, Kai Matuschewski ORCID, Taco W. A. Kooij ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Protein export is considered an essential feature of malaria parasite blood stage development. Here, we examined five components of the candidate Plasmodium translocon of exported proteins (PTEX), a complex thought to mediate protein export across the parasitophorous vacuole membrane into the host cell. Using the murine malaria model parasite Plasmodium berghei, we succeeded in generating parasite lines lacking PTEX88 and thioredoxin 2 (TRX2). Repeated attempts to delete the remaining three translocon components failed, suggesting essential functions for EXP2, PTEX150, and heat shock protein 101 (HSP101) during blood stage development. To analyze blood infections of the null-mutants, we established a flow cytometry-assisted intravital competition assay using three novel high fluorescent lines (Bergreen, Beryellow, and Berred). Although blood stage development of parasites lacking TRX2 was affected, the deficit was much more striking in PTEX88 null-mutants. The multiplication rate of PTEX88-deficient parasites was strongly reduced resulting in out-competition by wild-type parasites. Endogenous tagging revealed that TRX2::tag resides in distinct punctate organelles of unknown identity. PTEX88::tag shows a diffuse intraparasitic pattern in blood stage parasites. In trophozoites, PTEX88::tag also localized to previously unrecognized extensions reaching from the parasite surface into the erythrocyte cytoplasm. Together, our results indicate auxiliary roles for TRX2 and PTEX88 and central roles for EXP2, PTEX150, and HSP101 during P. berghei blood infection.