Published in

Taylor and Francis Group, Autophagy, 3(11), p. 575-577

DOI: 10.1080/15548627.2015.1017222

Links

Tools

Export citation

Search in Google Scholar

Novel inducers of BECN1-independent autophagy:cis-unsaturated fatty acids

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The induction of autophagy usually requires the activation of PIK3C3/VPS34 (phosphatidylinositol 3-kinase, catalytic subunit type 3) within a multiprotein complex that contains BECN1 (beclin 1, autophagy related). PIK3C3 catalyzes the conversion of phosphatidylinositol into phosphatidylinositol 3-phosphate (PtdIns3P). PtdIns3P associates with growing phagophores, which recruit components of the autophagic machinery, including the lipidated form of MAP1LC3B/LC3 (microtubule-associated protein 1 light chain 3 beta). Depletion of BECN1, PIK3C3 or some of their interactors suppresses the formation of MAP1LC3B(+) phagophores or autophagosomes elicited by most physiological stimuli, including saturated fatty acids. We observed that cis-unsaturated fatty acids stimulate the generation of cytosolic puncta containing lipidated MAP1LC3B as well as the autophagic turnover of long-lived proteins in the absence of PtdIns3P accumulation. In line with this notion, cis-unsaturated fatty acids require neither BECN1 nor PIK3C3 to stimulate the autophagic flux. Such a BECN1-independent autophagic response is phylogenetically conserved, manifesting in yeast, nematodes, mice and human cells. Importantly, MAP1LC3B(+) puncta elicited by cis-unsaturated fatty acids colocalize with Golgi apparatus markers. Moreover, the structural and functional collapse of the Golgi apparatus induced by brefeldin A inhibits cis-unsaturated fatty acid-triggered autophagy. It is tempting to speculate that the well-established health-promoting effects of cis-unsaturated fatty acids are linked to their unusual capacity to stimulate noncanonical, BECN1-independent autophagic responses.