Published in

American Society for Microbiology, Journal of Bacteriology, 18(184), p. 5011-5017, 2002

DOI: 10.1128/jb.184.18.5011-5017.2002

Links

Tools

Export citation

Search in Google Scholar

prbA, a Gene Coding for an Esterase Hydrolyzing Parabens in Enterobacter cloacae and Enterobacter gergoviae Strains

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The new gene prbA encodes an esterase responsible for the hydrolysis of the ester bond of parabens in Enterobacter cloacae strain EM. This gene is located on the chromosome of strain EM and was cloned by several PCR approaches. The prbA gene codes for an immature protein of 533 amino acids, the first 31 of which represent a proposed signal peptide yielding a mature protein of a putative molecular mass of 54.6 kDa. This enzyme presents analogies with other type B carboxylesterases, mainly of eukaryotic origin. The cloning and expression of the prbA gene in a strain of Escherichia coli previously unable to hydrolyze parabens resulted in the acquisition of a hydrolytic capacity comparable to the original activity of strain EM, along with an increased resistance of the transformed strain to methyl paraben. The presence of homologues of prbA was tested in additional ubiquitous bacteria, which may be causative factors in opportunistic infections, including Enterobacter gergoviae , Enterobacter aerogenes , Pseudomonas agglomerans , E. coli , Pseudomonas aeruginosa , and Burkholderia cepacia . Among the 41 total strains tested, 2 strains of E. gergoviae and 1 strain of Burkholderia cepacia were able to degrade almost completely 800 mg of methyl paraben liter −1 . Two strains of E. gergoviae , named G1 and G12, contained a gene that showed high homology to the prbA gene of E. cloacae and demonstrated comparable paraben esterase activities. The significant geographical distance between the locations of the isolated E. cloacae and E. gergoviae strains suggests the possibility of an efficient transfer mechanism of the prbA gene, conferring additional resistance to parabens in ubiquitous bacteria that represent a common source of opportunistic infections.