Published in

American Chemical Society, Journal of Physical Chemistry C, 33(117), p. 17123-17130, 2013

DOI: 10.1021/jp405820g

Links

Tools

Export citation

Search in Google Scholar

Amorphous Alumina Nanoparticles: Structure, Surface Energy, and Thermodynamic Phase Stability

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To provide a complete picture of the energy landscape of Al2O3 at the nanoscale, we directed this study toward understanding the energetics of amorphous alumina (a-Al2O3). a-Al2O3 nanoparticles were obtained by condensation from gas phase generated through laser evaporation of α-Al2O3 targets in pure oxygen at25 Pa. As-deposited nanopowders were heat-treated at different temperatures up to 600 °C to provide powders with surface areas of 670–340 m2/g. The structure of the samples was characterized by powder X-ray diffraction, transmission electron microscopy, and solid-state nuclear magnetic resonance spectroscopy. The results indicate that the microstructure consists of aggregated 3–5 nm nanoparticles that remain amorphous to temperatures as high as 600 °C. The structure consists of a network of AlO4, AlO5, and AlO6 polyhedra, with AlO5 being the most abundant species. The presence of water molecules on the surfaces was confirmed by mass spectrometry of the gases evolved on heating the samples under vacuum. A combination of BET surface-area measurements, water adsorption calorimetry, and high-temperature oxide melt solution calorimetry was employed for thermodynamic analysis. By linear fit of the measured excess enthalpy of the nanoparticles as a function of surface area, the surface energy of a-Al2O3 was determined to be 0.97 ± 0.04 J/m2. We conclude that the lower surface energy of a-Al2O3 compared with crystalline polymorphs γ- and α-Al2O3 makes this phase the most energetically stable phase at surface areas greater than 370 m2/g.