Published in

Institute of Electrical and Electronics Engineers, IEEE/ASME Transactions on Mechatronics, 3(6), p. 245-252, 2001

DOI: 10.1109/3516.951362

Links

Tools

Export citation

Search in Google Scholar

Reality-based models for vibration feedback in virtual environments

Journal article published in 2001 by Allison M. Okamura, Mark R. Cutkosky, Jack Tigh Dennerlein ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Reality-based modeling of vibrations has been used to enhance the haptic display of virtual environments for impact events such as tapping, although the bandwidths of many haptic displays make it difficult to accurately replicate the measured vibrations. We propose modifying reality-based vibration parameters through a series of perceptual experiments with a haptic display. We created a vibration feedback model, a decaying sinusoidal waveform, by measuring the acceleration of the stylus of a three degree-of-freedom haptic display as a human user tapped it on several real materials. A series of perceptual experiments, where human users rated the realism of various parameter combinations, were performed to further enhance the realism of the vibration display for impact events. The results provided different parameters than those derived strictly from acceleration data. Additional experiments verified the effectiveness of these modified model parameters by showing that users could differentiate between materials in a virtual environment