Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press (OUP), Brain, 8(128), p. 1943-1950

DOI: 10.1093/brain/awh527

Links

Tools

Export citation

Search in Google Scholar

Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The excitability of inhibitory circuits in patients with writer's cramp is reduced at multiple levels within the sensorimotor system, including the primary motor hand area (M1). Although this may play a major role in the pathophysiology of writer's cramp, it is still unclear what factors may cause the imbalance between inhibition and excitation to arise. One possibility is that homeostatic mechanisms that keep cortical excitability within a normal physiological range are impaired. In eight patients with writer's cramp and eight healthy age-matched controls, we combined low-frequency repetitive transcranial magnetic stimulation (rTMS) with transcranial direct current stimulation (TDCS) to probe regional homeostatic plasticity of the left M1. Confirming our previous study (Siebner et al., J Neurosci 2004; 24: 3379-85), 'facilitatory' preconditioning of the M1 with anodal TDCS enhanced the inhibitory effect of subsequent 1 Hz rTMS on corticospinal excitability. Conversely, 'inhibitory' preconditioning with cathodal TDCS reversed the after effect of 1 Hz rTMS, producing an increase in corticospinal excitability. The results were quite different in patients with writer's cramp. Following preconditioning with TDCS, 1 Hz rTMS induced no consistent changes in corticospinal excitability, indicating a loss of the normal 'homeostatic' response pattern. In addition, the normal inhibitory effect of preconditioning with cathodal TDCS was absent. The present data suggest that homeostatic mechanisms that stabilize excitability levels within a useful dynamic range are impaired in patients with writer's cramp. We propose that a faulty homeostatic response to acute increases in corticospinal excitability favours maladaptive motor plasticity. The role of homeostatic-like plasticity in the pathophysiology of task-specific dystonias warrants further study.