Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Information Sciences, (291), p. 43-60, 2015

DOI: 10.1016/j.ins.2014.08.039

Links

Tools

Export citation

Search in Google Scholar

A social learning particle swarm optimization algorithm for scalable optimization

Journal article published in 2015 by Ran Cheng, Yaochu Jin ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Social learning plays an important role in behavior learning among social animals. In contrast to individual (asocial) learning, social learning has the advantage of allowing individuals to learn behaviors from others without incurring the costs of individual trials-and-errors. This paper introduces social learning mechanisms into particle swarm optimization (PSO) to develop a social learning PSO (SL-PSO). Unlike classical PSO variants where the particles are updated based on historical information, including the best solution found by the whole swarm (global best) and the best solution found by each particle (personal best), each particle in the proposed SL-PSO learns from any better particles (termed demonstrators) in the current swarm. In addition, to ease the burden of parameter settings, the proposed SL-PSO adopts a dimension-dependent parameter control method. The proposed SL-PSO is first compared with five representative PSO variants on 40 low-dimensional test functions, including shifted and rotated test functions. The scalability of the proposed SL-PSO is further tested by comparing it with five state-of-the-art algorithms for large-scale optimization on seven high-dimensional (100-D, 500-D, and 1000-D) benchmark functions. Our comparative results show that SL-PSO performs well on low-dimensional problems and is promising for solving large-scale problems as well.