Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Langmuir, 26(23), p. 12984-12989, 2007

DOI: 10.1021/la702424r

Links

Tools

Export citation

Search in Google Scholar

Fabrication and Characterization of Plasma Processed Surfaces with Tuned Wettability

Journal article published in 2007 by A. Ruiz ORCID, A. Valsesia, G. Ceccone, D. Gilliland, P. Colpo, F. Rossi ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Engineered surfaces with controlled hydrophilic/ hydrophobic character have been fabricated by tailoring the substrate topography and chemistry. In this method, the substrate to be treated was first coated by a photoresist, which was then surface-roughened using SF6 plasma etching. The resulting rough texture was then transferred to the underlying silicon surface by over-etching of the photoresist. At this point, the topographically modified surface was modified chemically by controlled deposition of a thin polymer layer using plasma processing. In this way, both the surface texture and the surface chemistry could be varied independently, producing surfaces with variable wetting character, including super-hydrophilicity and super-hydrophobicity, depending on the choice of plasma polymer deposited. Chemical characterization demonstrates a correlation between the surface chemistry and the wettability of the samples after etching. The surface elementary composition contained more C-F groups as the measured contact angle increased, indicating that the change of wettability is due to both the roughness and the surface energy of the deposited photoresist. In the case of materials deposited on the plasma-treated rough surfaces, the strengthening of the wetting character is only due to the created surface roughness, as XPS analyses showed no significant chemical difference as compared to the flat polymer.