Published in

Optica, Journal of the Optical Society of America B, 6(31), p. 1316, 2014

DOI: 10.1364/josab.31.001316

Society of Photo-optical Instrumentation Engineers, Proceedings of SPIE, 2014

DOI: 10.1117/12.2061241

Links

Tools

Export citation

Search in Google Scholar

Optimized aperiodic highly directional narrowband infrared emitters

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, we present optimized aperiodic structures for use as narrowband, highly directional thermal infrared emitters for both TE and TM polarizations. These aperiodic multilayer structures designed with alternating layers of silicon and silica on top of a semi-infinite tungsten substrate exhibit extremely high emittance peaked around the wavelength at which the structures are optimized. Structures were designed by a genetic optimization algorithm coupled to a transfer matrix code that computed thermal emittance. First, we investigate the properties of the genetic-algorithm-optimized aperiodic structures and compare them to a previously proposed resonant cavity design. Second, we investigate a structure optimized to operate at the Wien wavelength corresponding to a near-maximum operating temperature for the materials used in the aperiodic structure. Finally, we present a structure that exhibits narrowband and highly directional emittance for both TE and TM polarizations at the frequency of one of the molecular resonances of carbon monoxide (CO); hence, the design is suitable for the emitting portion of a detector of CO via absorption spectroscopy.