Published in

BioScientifica, Journal of Endocrinology, 3(193), p. 359-366, 2007

DOI: 10.1677/joe-07-0024

Links

Tools

Export citation

Search in Google Scholar

Liver-derived IGF-I regulates kidney size, sodium reabsorption, and renal IGF-II expression

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The GH/-IGF-I axis is important for kidney size and function and may also be involved in the development of renal failure. In this study, the role of liver-derived endocrine IGF-I for kidney size and function was investigated in mice with adult liver-specific IGF-I inactivation (LI-IGF-I−/− mice). These mice have an 80–85% reduction of serum IGF-I level and compensatory increased GH secretion. Seven-month-old as well as 24-month-old LI-IGF-I−/− mice had decreased kidney weight. Glomerular filtration rate, assessed using creatinine clearance as well as creatinine clearance corrected for body weight, was unchanged. The 24-h urine excretion of sodium and potassium was increased in the LI-IGF-I−/− mice. In the 24-month-old mice, there was no between-group difference in kidney morphology. Microarray and real-time PCR (RT-PCR) analyses showed a high renal expression of IGF-II in the control mice, whereas in the LI-IGF-I−/− mice, there was a tissue-specific decrease in the renal IGF-II mRNA levels (−79%, P < 0.001 vs controls using RT-PCR). In conclusion, deficiency of circulating liver-derived IGF-I in mice results, despite an increase in GH secretion, in a global symmetrical decrease in kidney size, increased urinary sodium and potassium excretion, and a clear down regulation of renal IGF-II expression. However, the LI-IGF-I−/− mice did not develop kidney failure or nephrosclerosis. One may speculate that liver-derived endocrine IGF-I induces renal IGF-II expression, resulting in symmetrical renal growth.