Taylor and Francis Group, Archives of Agronomy and Soil Science, 12(59), p. 1743-1753, 2013
DOI: 10.1080/03650340.2012.748984
Full text: Download
Wind erosion is a serious problem, especially in arid and semi-arid regions. This study was conducted to assess the effects of wind speed as well as soil particle-size distribution on erosion rate (ER) using a wind tunnel. For this purpose, two clay loam soil samples (C2 and C10) in addition to a sandy clay loam (S2) were exposed to different wind velocities of 2, 9 and 18 m s−1. The result showed that erosion rate increased significantly with increasing wind speeds. In addition, a critical diameter of 0.84 mm for soil particles was supported; for larger particles the changes in erosion rate were negligible. Furthermore, soil erodibility (K) was determined, which for S2, C2 and C10 was 57.73, 10.27 and 1.43, respectively. To predict soil erodibility, a power relationship as K = 3.382 MWD−1.732 (R 2 = 0.99) was established. The results indicated with increasing wind speed, the sensitivity of S2 remained constant, whereas C2 and C10 resisted wind speed. The finding of this research indicates the importance of particle-size distribution on wind erosion rate as well as soil erodibility.