Dissemin is shutting down on January 1st, 2025

Published in

Transactions of the ASAE, 3(48), p. 1055-1061

DOI: 10.13031/2013.18516

Links

Tools

Export citation

Search in Google Scholar

Fecal coliform transport as affected by surface condition

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Land application of manure is recommended to recycle organic matter and nutrients, thus enhancing the soil quality and crop productivity. However, pathogens in manure may pose a human health risk if they reach potable or recreational water resources. The objective of this study was to observe and quantify the effects of vegetated filter strips (VFS) on surface and vertical transport of fecal coliform (FC) bacteria, surrogates for bacterial pathogens, released from surface-applied bovine manure. A two-sided lysimeter with 20% slope on both sides was constructed with a sandy loam soil on one side and a clay loam soil on the other. Each side of the lysimeter was divided into two subplots (6.0 x 6.4 m), one with grass and the other with bare soil. Plots were instrumented to collect runoff samples along a 6.0 m slope at three equidistant transects. Samples of runoff were also collected in a gutter at the edge of each plot. All plots were equipped with multi-sensor capacitance moisture probes to monitor water content through the soil profile. Bovine manure was applied at the top of each plot in a 30 cm strip. Rainfall was simulated at a 61 mm h(-1) intensity using a portable rainfall simulator. Surface runoff rate was measured and water quality sampled periodically throughout the simulation. Soil samples were taken at incremental depths (0-60 cm) after each simulation. Runoff (as % of total rainfall) decreased from 93% to 12% in the bare vs. vegetated clay loam plots and from 61% to 2% in the bare vs. vegetated sandy loam plots. The reduced runoff from vegetated plots decreased the surface transport of FC while increasing its vertical transport. The amount of FC in runoff (as % of applied) decreased from 68% to 1% in the bare vs. vegetated clay loam plots and from 23% to non-detectable levels in the bare vs. vegetated sandy loam plots. These data indicate that VFS can reduce surface transport of FC, even for slopes as high as 20%, especially in soils with high infiltration (e.g., sandy loam).