Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Neuropsychologia, (70), p. 114-125

DOI: 10.1016/j.neuropsychologia.2015.02.021

Links

Tools

Export citation

Search in Google Scholar

WAVES of awareness for occipital and parietal phosphenes perception.

Journal article published in 2015 by Chiara Bagattini, Chiara Mazzi, Silvia Savazzi ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Transcranial magnetic stimulation (TMS) of the occipital cortex is known to induce visual sensations, i.e. phosphenes, which appear as flashes of light in the absence of an external stimulus. Recent studies have shown that TMS can produce phosphenes also when the intraparietal sulcus (IPS) is stimulated. The main question addressed in this paper is whether parietal phosphenes are generated directly by local mechanisms or emerge through indirect activation of other visual areas. Electroencephalographic (EEG) signals were recorded while stimulating left occipital or parietal cortices inducing phosphene perception in healthy participants and in a hemianopic patient who suffered from complete destruction of the early visual cortex of the left hemisphere. Results in healthy participants showed that the onset of phosphene perception induced by occipital TMS correlated with differential cortical activity in temporal sites while the onset of phosphene perception induced by parietal TMS correlated with differential cortical activity in the stimulated parietal site. Moreover, IPS-TMS of the lesioned hemisphere of the hemianopic patient with a complete lesion to V1 showed again that the onset of phosphene perception correlated with differential cortical activity in the stimulated parietal site. The present data seem thus to suggest that temporal and parietal cortices can serve as different local early gatekeepers of perceptual awareness and that activity in the occipital cortex, although being relevant for perception in general, is not part of the neural bases of the perceptual awareness of phosphenes.