Elsevier, Neuropsychologia, (70), p. 114-125
DOI: 10.1016/j.neuropsychologia.2015.02.021
Full text: Download
Transcranial magnetic stimulation (TMS) of the occipital cortex is known to induce visual sensations, i.e. phosphenes, which appear as flashes of light in the absence of an external stimulus. Recent studies have shown that TMS can produce phosphenes also when the intraparietal sulcus (IPS) is stimulated. The main question addressed in this paper is whether parietal phosphenes are generated directly by local mechanisms or emerge through indirect activation of other visual areas. Electroencephalographic (EEG) signals were recorded while stimulating left occipital or parietal cortices inducing phosphene perception in healthy participants and in a hemianopic patient who suffered from complete destruction of the early visual cortex of the left hemisphere. Results in healthy participants showed that the onset of phosphene perception induced by occipital TMS correlated with differential cortical activity in temporal sites while the onset of phosphene perception induced by parietal TMS correlated with differential cortical activity in the stimulated parietal site. Moreover, IPS-TMS of the lesioned hemisphere of the hemianopic patient with a complete lesion to V1 showed again that the onset of phosphene perception correlated with differential cortical activity in the stimulated parietal site. The present data seem thus to suggest that temporal and parietal cortices can serve as different local early gatekeepers of perceptual awareness and that activity in the occipital cortex, although being relevant for perception in general, is not part of the neural bases of the perceptual awareness of phosphenes.