Published in

Cambridge University Press, Annals of Glaciology, 1(39), p. 359-365

DOI: 10.3189/172756404781814221

Links

Tools

Export citation

Search in Google Scholar

Deglacial and Holocene changes in accumulation at Law Dome, East Antarctica

Journal article published in 2004 by Tas D. van Ommen ORCID, Vin Morgan, Mark A. J. Curran
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractDating constraints have been combined with an ice-flow model to estimate surface accumulation rates at Law Dome, East Antarctica, to approximately 80 kyr BP. Results indicate that the present high-accumulation regime (~0.7ma–1 ice equivalent) was established some time after ~7 kyr BP, following an increase of approximately 80% from early to mid-Holocene. The accumulation rate at the Last Glacial Maximum is estimated at less than ~10% of the modern value. The record reveals an approximately linear dependence between temperature (inferred from isotope ratio) and accumulation rate through the glacial period. This dependence breaks down in the early Holocene, and this is interpreted as a change to a mode in which moisture-transport changes have a stronger influence on accumulation than temperature (via absolute humidity). The changes in accumulation, including the large change in the early to mid-Holocene, are accompanied by changes in sea-salt concentrations which support the hypothesis that Law Dome climate has shifted from a glacial climate, more like that of the present-day Antarctic Plateau, to its current Antarctic maritime climate. The change between these two modes occurred progressively through the early Holocene, possibly reflecting insolation-driven changes in atmospheric moisture content and circulation.