Dissemin is shutting down on January 1st, 2025

Published in

European Geosciences Union, Atmospheric Measurement Techniques, 2(2), p. 573-591, 2009

DOI: 10.5194/amt-2-573-2009

European Geosciences Union, Atmospheric Measurement Techniques Discussions, 3(2), p. 1247-1291

DOI: 10.5194/amtd-2-1247-2009

Links

Tools

Export citation

Search in Google Scholar

In-situ measurements of oxygen, carbon monoxide and greenhouse gases from Ochsenkopf tall tower in Germany

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. We present 2.5 years (from June 2006 to December 2008) of in-situ measurements of CO2, O2, CH4, CO, N2O and SF6 mixing ratios sampled from 23, 90 and 163 m above ground on the Ochsenkopf tower in the Fichtelgebirge range, Germany (50°01'49" N, 11°48'30" E, 1022 m a.s.l.). In addition to the in-situ measurements, flask samples are taken at Ochsenkopf at approximately weekly intervals and are subsequently analysed for the mixing ratios of the same species, as well as H2, and the stable isotopes, δ13C, δ18O in CO2. The in-situ measurements of CO2 and O2 from 23 m show substantial diurnal variations that are modulated by biospheric fluxes, combustion of fossil fuels, and by diurnal changes in the planetary boundary layer height. Measurements from 163 m exhibit only very weak diurnal variability, as this height (1185 m a.s.l.) is generally above the nocturnal boundary layer. CH4, CO, N2O and SF6 show little diurnal variation even at 23 m owing to the absence of any significant diurnal change in the fluxes and the absence of any strong local sources or sinks. From the in-situ record, the seasonal cycles of the gas species have been characterized and the multi-annual trends determined. Because the record is short, the calculation of the trend is sensitive to inter-annual variations in the amplitudes of the seasonal cycles. However, for CH4 a significant change in the growth-rate was detected for 2006.5–2008.5 as compared with the global mean from 1999 to 2006 and is consistent with other recent observations of a renewed increasing global growth rate in CH4 since the beginning of 2007.