Institute of Electrical and Electronics Engineers, IEEE Transactions on Automation Science and Engineering, 2(12), p. 507-518
DOI: 10.1109/tase.2015.2408634
Full text: Download
Cloud technology elevates the potential of robotics with which robots possessing various capabilities and resources may share data and combine new skills through cooperation. With multiple robots, a cloud robotic system enables intensive and complicated tasks to be carried out in an optimal and cooperative manner. Multisensor data retrieval (MSDR) is one of the key fundamental tasks to share the resources. Having attracted wide attention, MSDR is facing severe technical challenges. For example, MSDR is particularly difficult when cloud cluster hosts accommodate unpredictable data requests triggered by multiple robots operating in parallel. In these cases, near real-time responses are essential while addressing the problem of the synchronization of multisensor data simultaneously. In this paper, we present a framework targeting near real-time MSDR, which grants asynchronous access to the cloud from the robots. We propose a market-based management strategy for efficient data retrieval. It is validated by assessing several quality-of-service (QoS) criteria, with emphasis on facilitating data retrieval in near real-time. Experimental results indicate that the MSDR framework is able to achieve excellent performance under the proposed management strategy in typical cloud robotic scenarios.