Published in

American Astronomical Society, Astrophysical Journal, 1(805), p. 34, 2015

DOI: 10.1088/0004-637x/805/1/34

Links

Tools

Export citation

Search in Google Scholar

From Diversity to Dichotomy, and Quenching: Milky-Way-Like and Massive-Galaxy Progenitors at 0.5

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Using the HST/WFC3 and ACS multi-band imaging data taken in CANDELS and 3D-HST, we study the general properties and the diversity of the progenitors of the Milky Way (MWs) and local massive galaxy (MGs) at 0.5 2.5 kpc) radius since z ~ 2. Although the radial mass profiles evolve in distinct ways, the formation and quenching of the central dense region (or bulge) ahead of the outer disk formation are found to be common for both systems. The sudden reddening of bulge at z ~ 1.6 and z ~ 2.4 for MWs and MGs, respectively, suggests the formation of bulge and would give a clue to the different gas accretion histories and quenching. A new approach to evaluate the morphological diversity is conducted by using the average surface density profile and its dispersion. The variety of the radial mass profiles for MGs peaks at higher redshift (z > 2.8), and then rapidly converges to more uniform shape at z