Published in

Wiley, Journal of Evolutionary Biology, 2(14), p. 267-276, 2001

DOI: 10.1046/j.1420-9101.2001.00272.x

Links

Tools

Export citation

Search in Google Scholar

Temperature dependence of development rate and adult size in Drosophila species: biophysical parameters

Journal article published in 2001 by P. Gibert ORCID, G. De Jong
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Adult size in Drosophila results from the ratio of the rate of biomass increase and the rate of differentiation, both rates being temperature sensitive. Data on rates and size are collected in two tropical and two temperate Drosophila species; differentiation rate is higher in the two tropical species, growth rate differs between the large and small species of similar climatic origin. A biophysical model is used to evaluate the temperature dependence of adult size in Drosophila. The model is based upon the Sharpe–Schoolfield equation connecting enzyme kinetics and biological rates. Temperature sensitivities of growth rate, development time, and wing and thorax size are characterized by biophysical parameters. The biophysical parameter indicating trait specific temperature sensitivity is lower in tropical species than in temperate species, both for growth rate and for differentiation rate. In the larger species of a climate pair, thorax size and wing size prove to differ in pattern of temperature dependence; in the smaller species of a geographical pair, thorax size and wing size have identical patterns of temperature dependence.