Elsevier, Food Research International, 10(37), p. 941-948
DOI: 10.1016/j.foodres.2004.06.003
Full text: Unavailable
Several binary blends of vegetable oils commonly used in industrial shortenings (i.e., palm oil (PO), hydrogenated palm oil (HPO), soybean oil (SO), hydrogenated soybean oil (HSO), low-erucic acid rapeseed oil (LERO), hydrogenated low-erucic acid rapeseed oil (HLERO)) were studied for their physical properties such as solid fat content (SFC) by nuclear magnetic resonance (NMR) and textural properties (hardness). Microstructure was also observed by microscopy in order to explain the variability in hardness for samples having the same SFC values. The blends studied by microscopy were the following: HSO, HPO and HLERO diluted in LERO. For these three blends which had the same SFC the level of network structure was different. HSO diluted in LERO had more crystals, closer to each other and overlapped. This can explain that HSO has a higher hardness than HPO or HLERO, for a same SFC value, when diluted in LERO. Polymorphism was also observed by powder X-ray diffraction. The variability in hardness for samples having the same SFC is due to various crystal types and/or network structures that are formed upon crystallization of hard fats. This work demonstrates that for binary blends of studied oils, changes in the hardness are controlled mostly by the SFC, polymorphism and also by the material's microstructure. (C) 2004 Elsevier Ltd. All rights reserved.