Published in

American Association of Immunologists, The Journal of Immunology, 11(179), p. 7614-7623, 2007

DOI: 10.4049/jimmunol.179.11.7614

Links

Tools

Export citation

Search in Google Scholar

PRDM1/BLIMP-1 modulates IFN-γ-dependent control of the MHC class I antigen-processing and peptide-loading pathway

Journal article published in 2007 by Gina M. Doody ORCID, Sophie Stephenson, Charles McManamy, Reuben M. Tooze
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A diverse spectrum of unique peptide-MHC class I complexes guides CD8 T cell responses toward viral or stress-induced Ags. Multiple components are required to process Ag and facilitate peptide loading in the endoplasmic reticulum. IFN-gamma, a potent proinflammatory cytokine, markedly up-regulates transcription of genes involved in MHC class I assembly. Physiological mechanisms which counteract this response are poorly defined. We demonstrate that promoters of functionally linked genes on this pathway contain conserved regulatory elements that allow antagonistic regulation by IFN-gamma and the transcription factor B lymphocyte-induced maturation protein-1 (also known as PR domain-containing 1, with ZNF domain (PRDM1)). Repression of ERAP1, TAPASIN, MECL1, and LMP7 by PRDM1 results in failure to up-regulate surface MHC class I in response to IFN-gamma in human cell lines. Using the sea urchin prdm1 ortholog, we demonstrate that the capacity of PRDM1 to repress the IFN response of such promoters is evolutionarily ancient and that dependence on the precise IFN regulatory factor element sequence is highly conserved. This indicates that the functional interaction between PRDM1 and IFN-regulated pathways antedates the evolution of the adaptive immune system and the MHC, and identifies a unique role for PRDM1 as a key regulator of Ag presentation by MHC class I.