Published in

IOP Publishing, Journal of Physics: Condensed Matter, 5(22), p. 056003, 2010

DOI: 10.1088/0953-8984/22/5/056003

Links

Tools

Export citation

Search in Google Scholar

Determination of the percolation threshold in Fe/MgO magnetic granular multilayers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The evolution of the morphology, magnetic and transport properties of Fe(t nm)/MgO(3.0 nm) multilayers with respect to the nominal metallic layer thickness was investigated. A comparison with existing experimental data on discontinuous metal-insulator multilayers, ultrathin epitaxial Fe films on MgO substrates and granular cermet films is made. It is confirmed that the deposition conditions and the material composition play a crucial role in the percolation process. Nominal thicknesses of Fe layers at which an infinite metallic cluster is formed and the conditions for continuous Fe coverage were determined. Different methods of percolation threshold detection were analysed. We show that investigation of the temperature dependence of resistance in nanostructures could lead to an overestimation of the percolation threshold value, while magnetic measurements alone could lead to its underestimation.