Published in

Springer Verlag, Drug Delivery and Translational Research, 2(2), p. 95-105

DOI: 10.1007/s13346-011-0051-1

Links

Tools

Export citation

Search in Google Scholar

A novel nanoparticle formulation overcomes multiple types of membrane efflux pumps in human breast cancer cells

Journal article published in 2012 by Preethy Prasad, Ji Cheng, Adam Shuhendler ORCID, Andrew M. Rauth, Xiao Yu Wu
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Multidrug resistance (MDR) in cancer cells can involve overexpression of different types of membrane drug efflux pumps and other drug resistance mechanisms. Hence, inhibition of one resistance mechanism may not be therapeutically effective. Previously we demonstrated a new polymer lipid hybrid nanoparticle (PLN) system was able to circumvent drug resistance of P-glycoprotein (P-gp) overexpressing breast cancer cells. The objectives of the present study were 2-fold: (1) to evaluate the ability of the PLN system to overcome two other membrane efflux pumps—multidrug resistance protein 1 (MRP1+) and breast cancer resistance protein (BCRP+) overexpressed on human breast cancer cell lines MCF7 VP (MRP1+) and MCF7 MX (BCRP+); and (2) to evaluate possible synergistic effects of doxorubicin (Dox)–mitomycin C (MMC) in these cell lines. These objectives were accomplished by measuring in vitro cellular uptake, intracellular trafficking, and cytotoxicity (using a clonogenic assay and median effect analysis), of Dox, MMC, or Dox-MMC co-loaded PLN. Treatment of MDR cells with PLN encapsulating single anticancer agents significantly enhanced cell kill compared to free Dox or MMC solutions. Dox-MMC co-loaded PLN were 20–30-folds more effective in killing MDR cells than free drugs. Co-encapsulated Dox-MMC was more effective in killing MDR cells than single agent-encapsulated PLN. Microscopic images showed perinuclear localization of fluorescently labelled PLN in all cell lines. These results are consistent with our previous results for P-gp overexpressing breast cancer cells suggesting the PLN system can overcome multiple types of membrane efflux pumps increasing the cytotoxicity of Dox-MMC at significantly lower doses than free drugs.