Published in

Elsevier, Journal of Supercritical Fluids, (75), p. 21-29

DOI: 10.1016/j.supflu.2012.12.016

Links

Tools

Export citation

Search in Google Scholar

Processing naproxen with supercritical CO2

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Naproxen has been processed with supercritical fluids in order to improve the dissolution rate and bioavailability. Microparticles of naproxen have been obtained by a Rapid Expansion of Supercritical Solutions (RESS) process in which carbon dioxide has been used as a solvent and methanol as a cosolvent. The influence of extraction pressure (200–300 bar) and extraction temperature (60 °C and 100 °C) on the naproxen precipitation has also been investigated. In general, the morphology of the precipitated particles improved and particle size (PS) decreased in comparison to the raw material. Lower extraction pressure and higher extraction temperature led to a smaller particle size. On the other hand, a supercritical antisolvent (SAS) process has been applied due to the relative medium solubility values of naproxen in supercritical carbon dioxide, with precipitation obtained successfully in all cases. The initial concentration of the solution and the solvent effect has both been analysed. Morphologies and mean diameter ranges have been analysed by scanning electron microscopy (SEM) and the influence on crystallinity of both supercritical processes has been evaluated by X-ray diffraction (XRD) measurements.