Published in

American Society of Hematology, Blood, 3(117), p. 857-861, 2011

DOI: 10.1182/blood-2010-09-307041

Links

Tools

Export citation

Search in Google Scholar

Increased thioredoxin-1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractLevels of regulatory T cells (Tregs) are increased in different cancer types as well as in inflammatory diseases, such as rheumatoid arthritis. Treg accumulation may result from aberrant proliferation and trafficking as well as greater resilience to oxidative stress compared with conventional T cells. This enhanced antioxidative capacity of Tregs possibly serves as feedback inhibition during inflammation and prevents uncontrolled immune reactions by favoring survival of suppressor rather than effector cells. In this study, we demonstrate that human Tregs express and secrete higher levels of thioredoxin-1, a major antioxidative molecule. Thioredoxin-1 has an essential role in maintaining their surface thiol density as the first line of antioxidative defense mechanisms and is sensitive to proinflammatory stimuli, mainly tumor necrosis factor-α, in a nuclear factor-κB-dependent fashion. The antiapoptotic and oncogenic potential of (secreted) Trx-1 suggests that it may exert effects in Tregs beyond redox regulation.