Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Chemistry of Materials, 3(23), p. 544-553, 2010

DOI: 10.1021/cm1022344

Links

Tools

Export citation

Search in Google Scholar

Tailored Organic Electro-optic Materials and Their Hybrid Systems for Device Applications†

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent development of tailored organic electric-optic (OEO) materials and their applications in hybrid device systems has been reviewed. Hybrid systems encompass the optical and/or electrical components that form intimate contact with OEO materials, such as metal oxide barrier layers, solution processable passive waveguides, silicon nanoslots, and photonic CMOS chips, etc. These systems offer unique advantages combining excellent properties and simple processing for advanced photonic device platforms. Examples include the demonstration of low-Vπ and low-loss EO modulators in hybrid polymer sol−gel waveguides, CMOS-compatible hybrid polymer/silicon slotted waveguides, and EO polymer-clad silicon nitride ring resonator modulators. This review also provides a future prospect for the development of OEO materials and their hybrid systems.