Published in

Elsevier, International Journal of Solids and Structures, 2(42), p. 697-715

DOI: 10.1016/j.ijsolstr.2004.06.027

Links

Tools

Export citation

Search in Google Scholar

Dynamic mechanical and fracture properties of an infiltrated TiC-1080 steel cermet

Journal article published in 2005 by D. Rittel ORCID, N. Frage, M. P. Dariel
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The dynamic mechanical and fracture properties of a TiC porous network infiltrated with1080 steel are reported. Following infiltration, the cermet is subjected to various heat treatments that affect essentially the steel matrix. Dynamic compression tests show that the heat treatments increase the fracture strength of the cermet. The quasi-static fracture toughness (KIc) is also increased by the heat treatments. The dynamic (initiation) fracture toughness (KId) is substantially higher (by about a factor of 3) than its static counterpart. Failure mechanisms consist mainly of cleavage of the TiC and matrix grains, along with minor interfacial decohesion. However, dynamic loading induces substantial damage around the crack tip, consisting essentially of cleavage of TiC grains. Microcrak toughnening is believed to be responsible for the high dynamic toughness of the material. The critical microstructural fracture event is thus identified as the spreading of TiC cleavage microcracks into the neighboring steel grains.