Published in

Bentham Science Publishers, Current Drug Metabolism, 10(13), p. 1464-1475

DOI: 10.2174/138920012803762783

Links

Tools

Export citation

Search in Google Scholar

Yeast as a Humanized Model Organism for Biotransformation-Related Toxicity

Journal article published in 2012 by Jolanda S. van Leeuwen ORCID, Nico P. E. Vermeulen, J. Chris Vos
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

High drug attrition rates due to toxicity, the controversy of experimental animal usage, and the EU REACH regulation demanding toxicity profiles of a high number of chemicals demonstrate the need for new, in vitro toxicity models with high predictivity and throughput. Metabolism by cytochrome P450s (P450s) is one of the main causes of drug toxicity. As some of these enzymes are highly polymorphic leading to large differences is metabolic capacity, isotype-specific test systems are needed. In this review, we will discuss the use of "yeast" expressing (mammalian) P450s as a powerful, additional model system in drug safety. We will discuss the various cellular model systems for bioactivation-related toxicity and subsequently describe the properties of yeast as a model system, including the endogenous bioactivation enzymes present, the heterologous expression of (mammalian) P450s and the application of yeasts expressing heterologous P450s and/or other biotransformation enzymes in toxicity studies. All major human drug-metabolizing P450s have been successfully expressed in yeast and various mutagenicity tests have been performed with these humanized yeast strains. The few examples of non-mutagenic toxicity studies with these strains and of the combination of P450s with phase II or other human enzymes show the potential of yeast as a model system in metabolism-related toxicity studies. The wide variety of genome-wide screens available in yeast, combined with its well-annotated genome, also facilitate follow-up studies on the genes involved in toxicity. Unless indicated otherwise yeast will refer to baker's yeast Saccharomyces cerevisiae.