Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical Review Letters, 22(99)

DOI: 10.1103/physrevlett.99.227401

Links

Tools

Export citation

Search in Google Scholar

Observation of Excitons in One-Dimensional Metallic Single-Walled Carbon Nanotubes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Excitons are generally believed not to exist in metals because of strong screening by free carriers. Here we demonstrate that excitonic states can in fact be produced in metallic systems of a one-dimensional character. Using metallic single-walled carbon nanotubes as a model system, we show both experimentally and theoretically that electron-hole pairs form tightly bound excitons. The exciton binding energy of 50 meV, deduced from optical absorption spectra of individual metallic nanotubes, significantly exceeds that of excitons in most bulk semiconductors and agrees well with ab initio theoretical predictions.