Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Biochemistry, 20(38), p. 6380-6385, 1999

DOI: 10.1021/bi990270y

Links

Tools

Export citation

Search in Google Scholar

Structure of the Nucleotide-Diphospho-Sugar Transferase, SpsA from Bacillus subtilis , in Native and Nucleotide-Complexed Forms † , ‡

Journal article published in 1999 by Simon J. Charnock, Gideon J. Davies ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The enzymatic formation of glycosidic bonds may be catalyzed by the transfer of the glycosyl moiety from an activated nucleotide-diphospho-sugar donor to a specific acceptor. SpsA is a glycosyltransferase implicated in the synthesis of the spore coat of Bacillus subtilis, whose homologues include cellulose synthase and many lipopolysaccharide and bacterial O-antigen synthases. The three-dimensional crystal structure of SpsA has been determined by conventional MIR techniques at a resolution of 1.5 A. It is a two-domain protein with a nucleotide-binding domain together with an acceptor binding domain which features a disordered loop spanning the active site. The structures of SpsA in complex with both Mg-UDP and Mn-UDP have also been determined at 2.0 and 1.7 A, respectively. These complexes, together with the sequence conservation, begin to shed light on the mechanism of this ubiquitous family of inverting glycosyltransferases.