Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astronomical Journal, 6(130), p. 2522-2528, 2005

DOI: 10.1086/497830

Links

Tools

Export citation

Search in Google Scholar

XMM-NewtonSpectroscopy of the Highly Polarized and Luminous Broad Absorption Line Quasar CSO 755

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present the results from XMM-Newton observations of the highly optically polarized broad absorption line quasar (BALQSO) CSO 755. By analyzing its X-ray spectrum with a total of ~3000 photons we find that this source has an X-ray continuum of `typical' radio-quiet quasars, with a photon index of Gamma=1.83^{+0.07}_{-0.06}, and a rather flat (X-ray bright) intrinsic optical-to-X-ray spectral slope of alpha_ox=-1.51. The source shows evidence for intrinsic absorption, and fitting the spectrum with a neutral-absorption model gives a column density of N_H~1.2x10^{22} cm^{-2}; this is among the lowest X-ray columns measured for BALQSOs. We do not detect, with high significance, any other absorption features in the X-ray spectrum. Upper limits we place on the rest-frame equivalent width of a neutral (ionized) Fe Ka line, <=180 eV (<=120 eV), and on the Compton-reflection component parameter, R<=0.2, suggest that most of the X-rays from the source are directly observed rather than being scattered or reflected; this is also supported by the relatively flat intrinsic alpha_ox we measure. The possibility that most of the X-ray flux is scattered due to the high level of UV-optical polarization is ruled out. Considering data for 46 BALQSOs from the literature, including CSO 755, we have found that the UV-optical continuum polarization level of BALQSOs is not correlated with any of their X-ray properties. A lack of significant short- and long-term X-ray flux variations in the source may be attributed to a large black-hole mass in CSO 755. We note that another luminous BALQSO, PG 2112+059, has both similar shallow C IV BALs and moderate X-ray absorption.