Published in

Elsevier, Journal of Biological Chemistry, 32(278), p. 30206-30212, 2003

DOI: 10.1074/jbc.m303371200

Links

Tools

Export citation

Search in Google Scholar

Structure and Ligand-induced Conformational Change of the 39-kDa Glycoprotein from Human Articular Chondrocytes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The 39-kDa human cartilage glycoprotein (HCGP39), a member of a novel family of chitinase-like lectins (Chilectins), is overexpressed in articular chondrocytes and certain cancers. Proposed functions of this protein include a role in connective tissue remodeling and defense against pathogens. Similar to other Chi-lectins, HCGP39 promotes the growth of connective tissue cells. The ability of HCGP39 to activate cytoplasmic signaling pathways suggests the presence of a ligand for this protein at the cell surface. There is currently no information regarding the identity of any physiological or pathological ligands of the Chi-lectins or the nature of the protein-ligand interaction. Here, we show that HCGP39 is able to bind chitooligosaccharides with micromolar affinity. Crystal structures of the native protein and a complex with GlcNAc8 show that the ligand is bound in identical fashion to family 18 chitinases. However, unlike the chitinases, binding of the oligosaccharide ligand to HCGP39 induces a large conformational change. Thus, HCGP39 could be a lectin that binds chitin-like oligosaccharide ligands and possibly plays a role in innate responses to chitinous pathogens, such as fungi and nematodes.