Published in

American Institute of Physics, The Journal of Chemical Physics, 1(142), p. 014702, 2015

DOI: 10.1063/1.4905273

Links

Tools

Export citation

Search in Google Scholar

Demixing and confinement of non-additive hard-sphere mixtures in slit pores

Journal article published in 2015 by Noé G. Almarza ORCID, C. Martín, Enrique Lomba ORCID, Cecilia Bores ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

© 2015 AIP Publishing LLC. Using Monte Carlo simulation, we study the influence of geometric confinement on demixing for a series of symmetric non-additive hard spheres mixtures confined in slit pores. We consider both a wide range of positive non-additivities and a series of pore widths, ranging from the pure two dimensional limit to a large pore width where results are close to the bulk three dimensional case. Critical parameters are extracted by means of finite size analysis. As a general trend, we find that for this particular case in which demixing is induced by volume effects, the critical demixing densities (and pressures) increase due to confinement between neutral walls, following the expected behavior for phase equilibria of systems confined by pure repulsive walls: i.e., confinement generally enhances miscibility. However, a non-monotonous dependence of the critical pressure and density with pore size is found for small non-additivities. In this latter case, it turns out that an otherwise stable bulk mixture can be unexpectedly forced to demix by simple geometric confinement when the pore width decreases down to approximately one and a half molecular diameters. ; Peer Reviewed