Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Ultrasonics, 6-7(48), p. 613-620

DOI: 10.1016/j.ultras.2008.04.012

Links

Tools

Export citation

Search in Google Scholar

Acoustic impedance changes in cartilage and subchondral bone due to primary arthrosis

Journal article published in 2008 by Sonja Leicht, Kay Raum ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study aimed at assessing elastic changes of cartilage and subchondral bone in sections from osteoarthritic human tibia plateaus using a 50-MHz scanning acoustic microscope (SAM). Samples were obtained from 28 human individuals during alloplastic implant surgery. Sagittal sections were explored using a time-resolved acoustic microscope in hyperosmolar (2.5 molar) saline solution at 25 degrees C. Cartilage and bone impedance distributions were evaluated as a function of the distance to the cartilage-bone interface. The degree of cartilage degeneration was derived from histological and immunohistochemical analyses. The mean impedance value in cartilage was 2.12+/-0.02 Mrayl. The layered cartilage structure was revealed by means of distinctly different impedance values in most samples. Generally, values were higher close to the bone interface and decreased continuously towards the cartilage surface. Higher grades of degeneration show a loss of the layered structure and remarkable cartilage surface undulations. The mean impedance value in subchondral bone was 6.28+/-0.54 Mrayl. A significant increase of the acoustic impedance within the first 150 microm relative to cartilage-bone interface was observed in 65.5% of the investigated sections. We hypothesize that the impedance increase close to the bone cartilage boundary is an indicator for subchondral sclerosis.