Published in

Elsevier, Wear, 11-12(262), p. 1337-1345

DOI: 10.1016/j.wear.2007.01.017

Links

Tools

Export citation

Search in Google Scholar

Tribological behaviour of Cl-implanted TiN coatings for biomedical applications

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The tribological behaviour of the prosthetic pair TiN coated stainless steel/ultra high molecular weight polyethylene (UHMWPE) may be improved by chlorine-implantation of the TiN surface. Friction and wear were determined using a pin-on-disk apparatus and the wear mechanisms were investigated through scanning electron microscopy (SEM) and atomic force microscopy (AFM). Rutherford backscattering spectrometry (RBS) was used to determine the chlorine distribution profiles in the chlorine-implanted TiN coatings before and after the tribological experiments, while X-ray photoelectron spectroscopy (XPS) was used to characterize chemically the same samples. Chlorine-implantation led to a significant polymeric wear reduction when the lubricant was Hanks’ balanced salt solution (HBSS). If bovine serum albumin (BSA) was added to HBSS, a strong decrease of both friction and polymeric wear was observed for implanted and non-implanted TiN coatings. The former case was explained by the formation of a titanium oxide layer on the TiN surface, while the latter derived from albumin adsorption.