Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Molecular Human Reproduction, 5(18), p. 243-252, 2011

DOI: 10.1093/molehr/gar077

Links

Tools

Export citation

Search in Google Scholar

Changes in histone H4 acetylation during in vivo versus in vitro maturation of equine oocytes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Epigenetic modifications are established during gametogenesis and preimplantation embryonic development. Any disturbance of the normal natural environment during these critical phases could cause alterations of the epigenetic signature. Histone acetylation is an important epigenetic modification involved in the regulation of chromatin organization and gene expression. The present study was aimed to determine whether the proper establishment of post-translational histone H4 acetylation at lysine 8 (AcH4K8), 12 (AcH4K12), and 16 (AcH4K16) of equine oocytes is adversely affected during in vitro maturation when compared to in vivo matured oocytes collected from naturally cycling mares not undergoing ovarian hyperstimulation. The acetylation patterns were investigated by means of indirect immunofluorescence staining with specific antibodies directed against the acetylated lysine residues. Our results indicate that the acetylation state of H4 is dependent on the chromatin configuration in immature GV stage oocytes and it changes in a residue-specific manner along with the increase of chromatin condensation. In particular, the levels of AcH4K8 and AcH4K12 increased significantly, while AcH4K16 decreased significantly from the fibrillar to the condensed state of chromatin configuration within the GV. Moreover, during meiosis K8 and K12 were substantially deacetylated without any differences between in vivo and in vitro conditions, while K16 displayed a strong acetylation in oocytes matured in vivo, and in contrast, it was markedly deacetylated following in vitro maturation. Although the functional meaning of residue-specific acetylation during oocyte differentiation and meiotic resumption needs further investigation, our results support the hypothesis that in vitro maturation conditions can adversely affect oocyte ability to regulate the epigenetic reprogramming, critical for successful meiosis and subsequent embryonic development.