Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, BBA - Bioenergetics, (1557), p. 13-19, 2003

DOI: 10.1016/s0005-2728(02)00374-2

Links

Tools

Export citation

Search in Google Scholar

The respiratory chain of the thermophilic archaeon Sulfolobus metallicus: Studies on the type-II NADH dehydrogenase

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The membranes of the thermoacidophilic archaeon Sulfolobus metallicus exhibit an oxygen consumption activity of 0.5 nmol O(2) min(-1) mg(-1), which is insensitive to rotenone, suggesting the presence of a type-II NADH dehydrogenase. Following this observation, the enzyme was purified from solubilised membranes and characterised. The pure protein is a monomer with an apparent molecular mass of 49 kDa, having a high N-terminal amino acid sequence similarity towards other prokaryotic enzymes of the same type. It contains a covalently attached flavin, which was identified as being FMN by 31P-NMR spectroscopy, a novelty among type-II NADH dehydrogenases. Metal analysis showed the absence of iron, indicating that no FeS clusters are present in the protein. The average reduction potential of the FMN group was determined to be +160 mV, at 25 degrees C and pH 6.5, by redox titrations monitored by visible spectroscopy. Catalytically, the enzyme is a NADH:quinone oxidoreductase, as it is capable of transferring electrons from NADH to several quinones, including ubiquinone-1, ubiquinone-2 and caldariella quinone. Maximal turnover rates of 195 micromol NADH oxidized min(-1) mg(-1) at 60 degrees C were obtained using ubiquinone-2 as electron acceptor, after enzyme dilution and incubation with phospholipids.