Published in

International Association for Food Protection, Journal of Food Protection, 9(74), p. 1475-1481, 2011

DOI: 10.4315/0362-028x.jfp-11-065

Links

Tools

Export citation

Search in Google Scholar

Inhibition of Growth of Pathogenic Bacteria in Raw Milk by Legume Protein Esters

Journal article published in 2011 by Samir Mahgoub, Mahmoud Sitohy, Ali Osman ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Protein isolates from soybean and chickpea, as well as their methylated esters, were tested for their inhibitory action against the propagation of pathogenic bacteria in raw milk during its storage either at room temperature or under refrigeration. Raw milk was inoculated with a mixed culture of Listeria monocytogenes Scott A and Salmonella enterica serovar Enteritidis strain PT4 at ca. 2 log CFU ml⁻¹. Aerobic plate count, coliform count, and presumptive E. coli in raw milk treated with esterified legume proteins were inhibited by 2 to 3 log relative to a control after 6 to 8 days of storage at 4°C. At room temperature, bacterial populations (aerobic plate count, coliform count, and presumptive E. coli) in raw milk treated with esterified legume proteins were inhibited by ca. 1.5 to 1.6 log relative to the control after 12 h. Supplementation of raw milk with esterified soybean protein could significantly inhibit the counts of the two inoculated pathogens (L. monocytogenes Scott A and Salmonella Enteritidis PT4), which were initially inoculated at ca. 2 log CFU ml⁻¹, by ca. 2.4 log and 1.6 log CFU ml⁻¹, respectively, on day 8 of storage under cold conditions. Corresponding reductions amounting to 2.7 and 1.8 log CFU ml⁻¹ were observed after 12 h of storage at room temperature. Supplementation of raw milk with esterified soybean protein (0.5%) reduced the maximum level of titratable acidity to 0.21 and maintained the pH level at 6.4 after 8 days of storage under cold conditions as compared with 4 days for untreated raw milk. Similar results were observed when raw milk was stored at room temperature for 10 h.