Published in

Elsevier, Journal of Magnetism and Magnetic Materials, (370), p. 32-36

DOI: 10.1016/j.jmmm.2014.06.032

Links

Tools

Export citation

Search in Google Scholar

Direct evidence of Ni magnetic moment in TbNi2Mn-X-ray magnetic circular dichroism

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have investigated the individual magnetic moments of Ni, Mn and Tb atoms in the intermetallic compound TbNi2Mn in the Laves phase (magnetic phase transition temperature TC ~131 K) by X-ray magnetic circular dichroism (XMCD) studies at 300 K, 80 K and 20 K. Analyses of the experimental results reveal that Ni atoms at 20 K in an applied magnetic field of 1 T carry an intrinsic magnetic moment of spin and orbital magnetic moment contributions 0.53±0.01 μB and 0.05±0.01 μB, respectively. These moment values are similar to those of the maximum saturated moment of Ni element. A very small magnetic moment of order <0.1 μB has been measured for Mn. This suggests that Mn is antiferromagnetically ordered across the two nearly equally occupied sites of 16d and 8a. A magnetic moment of up to ~0.3 μB has been observed for the Tb atoms. Identification of a magnetic moment on the Ni atoms has provided further evidence for the mechanism of enhancement of the magnetic phase transition temperature in TbNi2Mn compared with TbNi2 (TC~37.5 K) and TbMn2 (TC~54 K) due to rare earth–transition metal (R–T) and transition metal–transition metal (T–T) interactions. The behaviour of the X-ray magnetic circular dichroism spectra of TbNi2Mn at 300 K, 80 K and 20 K – above and below the magnetic ordering temperature TC ~131 K – is discussed.