Published in

Springer, Plant and Soil, 1-2(271), p. 205-218, 2005

DOI: 10.1007/s11104-004-2387-5

Links

Tools

Export citation

Search in Google Scholar

Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Processes in the rhizosphere of metal hyperaccumulator species are largely unknown. We investigated root-induced changes of Ni biogeochemistry in the rhizosphere of Thlaspi goesingense Hlcsy in a rhizobox experiment and in related soil chemical and Ni uptake studies. In the rhizobox, a root monolayer was separated from rhizosphere soil by a nylon membrane. Rhizosphere soil was then sliced into 0.5mm layers and analyzed for changes in soluble (water-extractable, Ni S) and labile (1 M NH 4NO 3-extractable, Ni L) Ni pools. Ni L in the rhizosphere was depleted due to excessive uptake in T. goesingense. Ni S in the rhizosphere increased in contrast to expectations based on the experimental Ni desorption isotherm. Mathematical simulations following the Tinker–Nye–Barber approach overestimated the depletion of the Ni L and predicted a decrease of Ni S in the rhizosphere. In a hydroponic experiment, we demonstrated that T. goesingense takes up Ni 2+ but excludes metal–organic complexes. The model output was then improved in later versions considering this finding. A sensitivity analysis identified I max and K m, derived from the Michaelis–Menten uptake kinetics experiment to be the most sensitive of the model parameters. The model was also sensitive to the accuracy of the estimate of the initial Ni concentration (C Si) in soil solution. The formation of Ni–DOM complexes in solution could not explain the poor fit as in contrast to previous field experiments, the correlation between soluble Ni and dissolved organic carbon (DOC) was weak. Ion competition of Ni with Ca and Mg could be ruled out as explanation of enhanced Ni solubility in the rhizosphere as the molar ratio of Ni/(Ca + Mg) in solution was not affected. However, a decreased Vanselov coefficient Kv near the root plane indicated (an apparent) lower selectivity of the exchange complex for Ni, possibly due to adsorption of oxalate exuded by T. goesingense roots or associated rhizosphere microbes. This conclusion is supported by field data, showing enhanced oxalate concentrations in the rhizosphere of T. goesingense on the same experimental soil. The implications for phytoextraction and bio-available contaminant stripping (BCS) as well as for future modeling and experimental work are discussed.