Dissemin is shutting down on January 1st, 2025

Published in

American Society for Clinical Investigation, Journal of Clinical Investigation, 3(96), p. 1664-1671

DOI: 10.1172/jci118207

Links

Tools

Export citation

Search in Google Scholar

Alcohol intake modulates the effect of a polymorphism of the cholesteryl ester transfer protein gene on plasma high density lipoprotein and the risk of myocardial infarction.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A polymorphism of the CETP gene (CETP/TaqIB) with two alleles B1 (60%) and B2 (40%) has been investigated in relation to lipid variables and the risk of myocardial infarction in a large case-control study (ECTIM) of men aged 25-64. No association was observed between the polymorphism and LDL or VLDL related lipid variables. Conversely, B2 carriers had reduced levels of plasma CETP (P < 0.0001) and increased levels of HDL cholesterol (P < 0.0001) and of other HDL related lipid variables. The effects of the polymorphism on plasma CETP and HDL cholesterol were independent, suggesting the presence of at least two functional variants linked to B2. A search for these variants on the coding sequence of the CETP gene failed to identify them. The effect of B2 on plasma HDL cholesterol was absent in subjects drinking < 25 grams/d of alcohol but increased commensurably, with higher values of alcohol consumption (interaction: P < 0.0001). A similar interaction was not observed for plasma CETP. The odds-ratio for myocardial infarction of B2 homozygotes decreased from 1.0 in nondrinkers to 0.34 in those drinking 75 grams/d or more. These results provide the first demonstration of a gene-environment interaction affecting HDL cholesterol levels and coronary heart disease risk.