Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2(1813), p. 358-366, 2011

DOI: 10.1016/j.bbamcr.2010.12.004

Links

Tools

Export citation

Search in Google Scholar

Continuous light exposure causes cumulative stress that affects the localization oscillation dynamics of the transcription factor Msn2p

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Light exposure is a potentially powerful stress factor during in vivo optical microscopy studies. In yeast, the general transcription factor Msn2p translocates from the cytoplasm to the nucleus in response to illumination. However, previous time-lapse fluorescence microscopy studies of Msn2p have utilized a variety of discrete exposure settings, which makes it difficult to correlate stress levels and illumination parameters. We here investigate how continuous illumination with blue light, corresponding to GFP excitation wavelengths, affects the localization pattern of Msn2p-GFP in budding yeast. The localization pattern was analyzed using a novel approach that combines wavelet decomposition and change point analysis. It was found that the Msn2p nucleocytoplasmic localization trajectories for individual cells exhibit up to three distinct and successive states; i) Msn2p localizes to the cytoplasm; ii) Msn2p rapidly shuttles between the cytoplasm and the nucleus; iii) Msn2p localizes to the nucleus. Many cells pass through all states consecutively at high light intensities, while at lower light intensities most cells only reach states i) or ii). This behaviour strongly indicates that continuous light exposure gradually increases the stress level over time, presumably through continuous accumulation of toxic photoproducts, thereby forcing the cell through a bistable region corresponding to nucleocytoplasmic oscillations. We also show that the localization patterns are dependent on protein kinase A (PKA) activity, i.e. yeast cells with constantly low PKA activity showed a stronger stress response. In particular, the nucleocytoplasmic oscillation frequency was found to be significantly higher for cells with low PKA activity for all light intensities.